How to Connect Kaggle with High-Performance GPUs with Free Trial

Cloudam, as an industry-leading cloud-HPC platform, has a variety of GPU instances, such as NVIDIA A100 and V100, which has become an awesome tool for Deep Learning professionals and fans.

connect kaggle with high performance GPU on AWS, Google Cloud, Azure, etc

Any DL engineers or fans who want to power your DL projects for the Kaggle competitions with massive high-performance computing resources, here's a hands-on tutorial of how you can seamlessly connect your Kaggle dataset to Cloudam.


1. Create an API key in Kaggle.

To do this, go to and open your user settings page.


2. Next, scroll down to the API access section and click 'generate' to download an API key.

This will download a file called kaggle.json to your PC. You'll use this file in Cloudam to access Kaggle datasets and competitions.

3. Navigate to Cloudam Console. (Register now and get the $30 Free Trial for every new user)

4. Upload your kaggle.json file on the 'Storage' page.

You can easily upload files and folders to Cloudam Storage by either clicking a few buttons or drag & drop

5. Install the Kaggle API and move the kaggle.json file into ~/.kaggle

6. Now you can access datasets using the client.

7. Download the datasets and extract the CSV file from the zip file.

8. Now, you can successfully read the Kaggle dataset into Cloudam, and run a test with multiple GPU choices with the $30 Free Trial.

About Cloudam

Cloudam is a one-stop cloud-HPC platform with 300+ pre-installed to deploy immediately. The system can smartly schedule compute nodes and dynamically schedule the software licenses, optimizing workflow and boosting efficiency for engineers and researchers.<